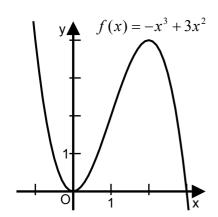

Hauptsatz der Diffenzial- und Integralrechnung:

Die Funktion sei auf einem Intervall I stetig und $f(x) \ge f$ ür $x \in I$.

Ist **F** eine Stammfunktion von f in I, dann gilt für $a \in I$ und $b \in I$ mit $a \le b$:

$$\int_{a}^{b} f(x)dx = F(b) - F(a)$$


Beispiel 1:

Berechne das Integral:

$$\int_{-1}^{0.5} (x^3 + 2) dx$$

Beispiel 2:

Berechne den Inhalt der Fläche, welche der Graph der Funktion f mit der x-Achse einschließt.

Berechne die Integrale:

$\int_{0.5}^{1} \frac{1}{x^2} dx =$	'		
$\int_{1}^{3} x^{2} dx =$ $\int_{0}^{4} x^{3} dx =$ $\int_{0.5}^{2} \frac{1}{x^{2}} dx =$		$\int_{1} x dx =$	
$\int_{0}^{1} x^{3} dx =$ $\int_{0.5}^{2} \frac{1}{x^{2}} dx =$	2	$\int_{1}^{3} x^2 dx =$	
$ \frac{4}{\int_{0.5}^{2} \frac{1}{x^{2}} dx} = 5 $ $ \frac{4}{\int_{0.5}^{4} \frac{1}{x^{3}} dx} = 5 $		$\int_{0}^{\infty} x^{3} dx =$	
$ \int_{0}^{4} \frac{1}{x^{3}} dx = $	4	$\int_{0.5}^{2} \frac{1}{x^2} dx =$	
	5	$\int_{2}^{4} \frac{1}{x^3} dx =$	
$ \int_{-2}^{1} x^2 dx = $	6		
$7 \int_{-8}^{-4} x^2 dx$		$\int_{-8}^{-4} x^2 dx$	
$8 \int_{-4}^{-3} \frac{1}{x^2} dx$	8	$\int_{-4}^{-3} \frac{1}{x^2} dx$	
$ \oint_{1}^{4} x^{3} dx = $	9		
$\int_{2}^{5} dx =$		$\int_{2} dx =$	
$\int_{1}^{7} 1 dx =$	11	$\int_{1}^{7} 1 dx =$	
$\int_{-8}^{0} 2dx =$		$\int_{-8} 2dx =$	
$\int_{1}^{5} (\frac{1}{2}x + 2) dx =$		$\int_{1}^{\infty} \frac{(-x+2)dx}{2} =$	
$\int_{0}^{\pi} 2\sin(x)dx =$		$\int_{0}^{\pi} 2\sin(x)dx =$	
$\int_{1}^{2} (1-2x)^2 dx =$		$\int_{1}^{2} (1-2x)^2 dx =$	
$\int_{0}^{1} (2x^{3} + x^{2}) dx =$	16	$\int_{0}^{1} (2x^3 + x^2) dx =$	
$\int_{1}^{3} (x - \frac{1}{x^2}) dx$	17	$\int_{1}^{3} (x - \frac{1}{x^2}) dx$	